Document Type : Narrative Review

Authors

1 Payame Noor University of Kish International Center

2 Graduated, Islamic Azad University, Najafabad Branch, Najafabad, Iran.

Abstract

After decades of experimental and clinical investigations regarding to immunomodulatory therapies for multiple sclerosis (MS) point to exact immunological pathogenesis that drive disease relapses, progression, and remission. In this regard, we shed a light on our current information on multiple sclerosis immunopathogenesis, assess strong hypotheses about the role of the immune system in the disease and clarify key controversies that are still unresolved. Recent clinical recognitions in the field of immunology, and the increasing advances with respect to the role of inflammation as a pivotal component of demyelination, are shaping our findings of disease immunopathogenesis, and we evaluate the concepts for improved efficacy of current treatments of MS in the future.

Keywords

  1. Inojosa H, Schriefer D, Ziemssen T. Clinical outcome measures in multiple sclerosis: a review. Autoimmunity reviews. 2020;19(5):102512.
  2. Louapre C, Collongues N, Stankoff B, Giannesini C, Papeix C, Bensa C, et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA neurology. 2020;77(9):1079-88.
  3. Drerup M, Roth A, Kane A, Sullivan AB. Therapeutic Approaches to Insomnia and Fatigue in Patients with Multiple Sclerosis. Nature and science of sleep. 2021;13:201-7.
  4. Wengler K, Ha J, Syritsyna O, Bangiyev L, Coyle PK, Duong TQ, et al. Abnormal blood-brain barrier water exchange in chronic multiple sclerosis lesions: A preliminary study. Magnetic resonance imaging. 2020;70:126-33.
  5. Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G. Common Peripheral Immunity Mechanisms in Multiple Sclerosis and Alzheimer's Disease. Front Immunol. 2021;12:639369.
  6. Sorensen PS, Fox RJ, Comi G. The window of opportunity for treatment of progressive multiple sclerosis. Current opinion in neurology. 2020;33(3):262-70.
  7. Goldschmidt CH, Cohen JA. The rise and fall of high-dose biotin to treat progressive multiple sclerosis. Neurotherapeutics. 2020;17(3):968-70.
  8. Derfuss T, Mehling M, Papadopoulou A, Bar-Or A, Cohen JA, Kappos L. Advances in oral immunomodulating therapies in relapsing multiple sclerosis. The Lancet Neurology. 2020;19(4):336-47.
  9. Hauser SL, Cree BA. Treatment of multiple sclerosis: a review. The American Journal of Medicine. 2020.
  10. Sellner J, Rommer PS. Immunological consequences of “immune reconstitution therapy” in multiple sclerosis: A systematic review. Autoimmunity reviews. 2020;19(4):102492.
  11. Scazzone C, Agnello L, Bivona G, Sasso BL, Ciaccio M. Vitamin D and Genetic Susceptibility to Multiple Sclerosis. Biochemical genetics. 2020:1-30.
  12. Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. International journal of neuroscience. 2020;130(3):279-300.
  13. Nakatsuka N, Patterson N, Patsopoulos NA, Altemose N, Tandon A, Beecham AH, et al. Two genetic variants explain the association of European ancestry with multiple sclerosis risk in African-Americans. Scientific reports. 2020;10(1):1-9.
  14. Wang J, Jelcic I, Mühlenbruch L, Haunerdinger V, Toussaint NC, Zhao Y, et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell. 2020;183(5):1264-81. e20.
  15. Wagner CA, Roqué PJ, Goverman JM. Pathogenic T cell cytokines in multiple sclerosis. The Journal of experimental medicine. 2020;217(1).
  16. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nature reviews Immunology. 2014;14(7):463-77.
  17. Baulina N, Kiselev I, Favorova O. Imprinted Genes and Multiple Sclerosis: What Do We Know? Int J Mol Sci. 2021;22(3).
  18. Gregory AP, Dendrou CA, Attfield KE, Haghikia A, Xifara DK, Butter F, et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature. 2012;488(7412):508-11.
  19. Vakhitov V, Kuzmina US, Bakhtiyarova K, Zainullina L, Maksimova M, Zileeva Z, et al. Epigenetic mechanisms of the pathogenesis of multiple sclerosis. Human Physiology. 2020;46(1):104-12.
  20. Ferrè L, Filippi M, Esposito F. Involvement of Genetic Factors in Multiple Sclerosis. Frontiers in Cellular Neuroscience. 2020;14:409.
  21. Faber H, Kurtoic D, Krishnamoorthy G, Weber P, Pütz B, Müller-Myhsok B, et al. Gene expression in spontaneous experimental autoimmune encephalomyelitis is linked to human multiple sclerosis risk genes. Frontiers in immunology. 2020;11.
  22. Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature genetics. 2013;45(12):1452-8.
  23. Patsopoulos NA, De Jager PL. Genetic and gene expression signatures in multiple sclerosis. Multiple Sclerosis Journal. 2020;26(5):576-81.
  24. Martínez-Aguilar L, Pérez-Ramírez C, del Mar Maldonado-Montoro M, Carrasco-Campos MI, Membrive-Jiménez C, Martínez-Martínez F, et al. Effect of genetic polymorphisms on therapeutic response in multiple sclerosis relapsing-remitting patients treated with interferon-beta. Mutation Research/Reviews in Mutation Research. 2020:108322.
  25. Tarlinton RE, Khaibullin T, Granatov E, Martynova E, Rizvanov A, Khaiboullina S. The Interaction between Viral and Environmental Risk Factors in the Pathogenesis of Multiple Sclerosis. Int J Mol Sci. 2019;20(2).
  26. Alfredsson L, Olsson T. Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harbor perspectives in medicine. 2019;9(4).
  27. Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nature medicine. 1997;3(10):1133-6.
  28. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nature reviews Neurology. 2017;13(1):25-36.
  29. Spencer JI, Bell JS, DeLuca GC. Vascular pathology in multiple sclerosis: reframing pathogenesis around the blood-brain barrier. Journal of neurology, neurosurgery, and psychiatry. 2018;89(1):42-52.
  30. Correale J, Gaitán MI. Multiple sclerosis and environmental factors: the role of vitamin D, parasites, and Epstein-Barr virus infection. Acta neurologica Scandinavica. 2015;132(199):46-55.
  31. Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol. 2020;11:587078.
  32. Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, et al. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends in molecular medicine. 2020;26(3):296-310.
  33. Ruprecht K, Wildemann B, Jarius S. Low intrathecal antibody production despite high seroprevalence of Epstein-Barr virus in multiple sclerosis: a review of the literature. J Neurol. 2018;265(2):239-52.
  34. Hassani A, Khan G. Epstein-Barr Virus and miRNAs: Partners in Crime in the Pathogenesis of Multiple Sclerosis? Front Immunol. 2019;10:695.
  35. Münz C, Lünemann JD, Getts MT, Miller SD. Antiviral immune responses: triggers of or triggered by autoimmunity? Nature Reviews Immunology. 2009;9(4):246-58.
  36. Esmaeil Amini M, Shomali N, Bakhshi A, Rezaei S, Hemmatzadeh M, Hosseinzadeh R, et al. Gut microbiome and multiple sclerosis: New insights and perspective. Int Immunopharmacol. 2020;88:107024.
  37. Wagner CA, Roqué PJ, Goverman JM. Pathogenic T cell cytokines in multiple sclerosis. J Exp Med. 2020;217(1).
  38. Greer JM. Autoimmune T-cell reactivity to myelin proteolipids and glycolipids in multiple sclerosis. Multiple sclerosis international. 2013;2013:151427.
  39. Koukoulitsa C, Chontzopoulou E, Kiriakidi S, Tzakos AG, Mavromoustakos T. A Journey to the Conformational Analysis of T-Cell Epitope Peptides Involved in Multiple Sclerosis. Brain sciences. 2020;10(6).
  40. Huseby ES, Kamimura D, Arima Y, Parello CS, Sasaki K, Murakami M. Role of T cell-glial cell interactions in creating and amplifying central nervous system inflammation and multiple sclerosis disease symptoms. Front Cell Neurosci. 2015;9:295.
  41. Visintin E, Tinelli M, Kanavos P. Value assessment of disease-modifying therapies for Relapsing-Remitting Multiple Sclerosis: HTA evidence from seven OECD countries. Health policy (Amsterdam, Netherlands). 2019;123(2):118-29.
  42. Lovett-Racke AE, Yang Y, Racke MK. Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochimica et biophysica acta. 2011;1812(2):246-51.
  43. Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. The Lancet Neurology. 2008;7(9):796-804.
  44. Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al. Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature. 2010;467(7318):967-71.
  45. Noster R, Riedel R, Mashreghi MF, Radbruch H, Harms L, Haftmann C, et al. IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Science translational medicine. 2014;6(241):241ra80.
  46. Kuerten S, Jackson LJ, Kaye J, Vollmer TL. Impact of Glatiramer Acetate on B Cell-Mediated Pathogenesis of Multiple Sclerosis. CNS Drugs. 2018;32(11):1039-51.
  47. Russi AE, Brown MA. The meninges: new therapeutic targets for multiple sclerosis. Translational research : the journal of laboratory and clinical medicine. 2015;165(2):255-69.
  48. Sabatino JJ, Jr., Zamvil SS, Hauser SL. B-Cell Therapies in Multiple Sclerosis. Cold Spring Harbor perspectives in medicine. 2019;9(2).
  49. Leypoldt F, Armangue T, Dalmau J. Autoimmune encephalopathies. Annals of the New York Academy of Sciences. 2015;1338(1):94-114.
  50. Stern JN, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Science translational medicine. 2014;6(248):248ra107.
  51. Roach CA, Cross AH. Anti-CD20 B Cell Treatment for Relapsing Multiple Sclerosis. Frontiers in neurology. 2020;11:595547.
  52. Greenfield AL, Hauser SL. B-cell Therapy for Multiple Sclerosis: Entering an era. Ann Neurol. 2018;83(1):13-26.
  53. Vasileiadis GK, Dardiotis E, Mavropoulos A, Tsouris Z, Tsimourtou V, Bogdanos DP, et al. Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? Auto- immunity highlights. 2018;9(1):9.
  54. Buc M. Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediators of inflammation. 2013;2013:963748.
  55. Fritzsching B, Haas J, König F, Kunz P, Fritzsching E, Pöschl J, et al. Intracerebral human regulatory T cells: analysis of CD4+ CD25+ FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients. PloS one. 2011;6(3):e17988.
  56. Roychoudhuri R, Hirahara K, Mousavi K, Clever D, Klebanoff CA, Bonelli M, et al. BACH2 represses effector programs to stabilize T(reg)-mediated immune homeostasis. Nature. 2013;498(7455):506-10.
  57. Costantino CM, Baecher-Allan C, Hafler DA. Multiple sclerosis and regulatory T cells. Journal of clinical immunology. 2008;28(6):697-706.
  58. Blonda M, Amoruso A, Martino T, Avolio C. New Insights Into Immune Cell-Derived Extracellular Vesicles in Multiple Sclerosis. Frontiers in neurology. 2018;9:604.
  59. Pegoretti V, Swanson KA, Bethea JR, Probert L, Eisel ULM, Fischer R. Inflammation and Oxidative Stress in Multiple Sclerosis: Consequences for Therapy Development. Oxidative medicine and cellular longevity. 2020;2020:7191080.
  60. Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Frontiers in neurology. 2020;11:607766.
  61. Guerrero BL, Sicotte NL. Microglia in Multiple Sclerosis: Friend or Foe? Front Immunol. 2020;11:374.
  62. Zia S, Rawji KS, Michaels NJ, Burr M, Kerr BJ, Healy LM, et al. Microglia Diversity in Health and Multiple Sclerosis. Front Immunol. 2020;11:588021.