Document Type : Narrative Review

Author

Graduated, Islamic Azad University, Najafabad Branch, Najafabad, Iran.

Abstract

Multiple sclerosis (MS) is an autoimmune inflammatory-neurodegenerative disease of the central nervous system (CNS) characterized by significant inter- and intra-individual different presentations. Using the clinical and imaging biomarkers is currently not able to predict the severity of disease. However, molecular biomarkers which are easily detectable come from the aspects of immunology and neurobiology due to the causal immunopathogenesis and can excellently predict other disease characteristics. Only a few molecular biomarkers have so far been routinely assessed in clinical practice as the assessment of their sensitivity, specificity, and measurement take a long time. In this review, we shed a light on the characteristics that an ideal MS biomarker should have and also the problems of introducing new biomarkers. Furthermore, clinically associated and well-established biomarkers from the blood and cerebrospinal fluid (CSF) are described which are practical for MS diagnosis and prognosis as well as for the evaluation of therapy response and complications.

Keywords

  1. Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Frontiers in immunology. 2020;11:3315.
  2. Novo JC, Felgueiras H. Neuro-ophthalmologic manifestations of multiple sclerosis other than acute optic neuritis. Multiple sclerosis and related disorders. 2020:102730.
  3. Hauer L, Perneczky J, Sellner J. A global view of comorbidity in multiple sclerosis: a systematic review with a focus on regional differences, methodology, and clinical implications. Journal of Neurology. 2020:1-12.
  4. Barros C, Fernandes A. Linking Cognitive Impairment to Neuroinflammation in Multiple Sclerosis using neuroimaging tools. Multiple sclerosis and related disorders. 2020:102622.
  5. Sapko K, Jamroz-Wiśniewska A, Marciniec M, Kulczyński M, Szczepańska-Szerej A, Rejdak K. Biomarkers in Multiple Sclerosis: a review of diagnostic and prognostic factors. Neurologia i neurochirurgia polska. 2020;54(3):252-8.
  6. Group BDW, Atkinson Jr AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical pharmacology & therapeutics. 2001;69(3):89-95.
  7. Porter L, Shoushtarizadeh A, Jelinek GA, Brown CR, Lim CK, de Livera AM, et al. Metabolomic biomarkers of multiple sclerosis: A systematic review. Frontiers in Molecular Biosciences. 2020;7.
  8. van Munster CE, Uitdehaag BM. Outcome measures in clinical trials for multiple sclerosis. CNS drugs. 2017;31(3):217-36.
  9. Nociti V, Santoro M. What do we know about the role of lncRNAs in multiple sclerosis? Neural Regeneration Research. 2021;16(9):1715.
  10. Simon R. Sensitivity, specificity, PPV, and NPV for predictive biomarkers. JNCI: Journal of the National Cancer Institute. 2015;107(8).
  11. Azzopardi L, Thompson SA, Harding KE, Cossburn M, Robertson N, Compston A, et al. Predicting autoimmunity after alemtuzumab treatment of multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2014;85(7):795-8.
  12. Martinez B, Peplow PV. MicroRNAs in blood and cerebrospinal fluid as diagnostic biomarkers of multiple sclerosis and to monitor disease progression. Neural regeneration research. 2020;15(4):606.
  13. Pannewitz-Makaj K, Wurster U, Jendretzky KF, Gingele S, Sühs K-W, Stangel M, et al. Evidence of Oligoclonal Bands Does Not Exclude Non-Inflammatory Neurological Diseases. Diagnostics. 2021;11(1):37.
  14. Pryce G, Baker D. Oligoclonal bands in multiple sclerosis; Functional significance and therapeutic implications. Does the specificity matter? Multiple sclerosis and related disorders. 2018;25:131-7.
  15. Gastaldi M, Zardini E, Leante R, Ruggieri M, Costa G, Cocco E, et al. Cerebrospinal fluid analysis and the determination of oligoclonal bands. Neurological Sciences. 2017;38(2):217-24.
  16. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018;17(2):162-73.
  17. Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. Journal of Neurology, Neurosurgery & Psychiatry. 2013;84(8):909-14.
  18. Owens GP, Burgoon MP, Anthony J, Kleinschmidt-DeMasters BK, Gilden DH. The immunoglobulin G heavy chain repertoire in multiple sclerosis plaques is distinct from the heavy chain repertoire in peripheral blood lymphocytes. Clinical Immunology. 2001;98(2):258-63.
  19. Musaeus CS, Gleerup HS, Høgh P, Waldemar G, Hasselbalch SG, Simonsen AH. Cerebrospinal fluid/plasma albumin ratio as a biomarker for blood-brain barrier impairment across neurodegenerative dementias. Journal of Alzheimer's Disease. 2020(Preprint):1-8.
  20. Link H, Huang YM. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. Journal of neuroimmunology. 2006;180(1-2):17-28.
  21. Kattimani Y, Veerappa AM. Complex interaction between mutant HNRNPA1 and gE of varicella zoster virus in pathogenesis of multiple sclerosis. Autoimmunity. 2018;51(4):147-51.
  22. Brettschneider J, Tumani H, Kiechle U, Muche R, Richards G, Lehmensiek V, et al. IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PloS one. 2009;4(11):e7638.
  23. Sotelo J. On the viral hypothesis of multiple sclerosis: participation of varicella-zoster virus. J Neurol Sci. 2007;262(1-2):113-6.
  24. Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain research bulletin. 2018;136:118-29.
  25. Ortiz Salas PA, Gaviria Carrillo M, Cortés Bernal GA, Moreno Medina K, Roa LF, Rodríguez Quintana JH. Neuromyelitis optica spectrum disorder: Do patients positive and negative for anti-aquaporin-4 antibodies present distinct entities? A Colombian perspective. Neurologia (Barcelona, Spain). 2020.
  26. Seay M, Rucker JC. Neuromyelitis Optica: Review and Utility of Testing Aquaporin-4 Antibody in Typical Optic Neuritis. Asia-Pacific journal of ophthalmology (Philadelphia, Pa). 2018;7(4):229-34.
  27. Mangiatordi GF, Alberga D, Trisciuzzi D, Lattanzi G, Nicolotti O. Human Aquaporin-4 and Molecular Modeling: Historical Perspective and View to the Future. Int J Mol Sci. 2016;17(7).
  28. Weber MS, Derfuss T, Metz I, Brück W. Defining distinct features of anti-MOG antibody associated central nervous system demyelination. Therapeutic advances in neurological disorders. 2018;11:1756286418762083.
  29. Lana-Peixoto MA, Talim N. Neuromyelitis Optica Spectrum Disorder and Anti-MOG Syndromes. Biomedicines. 2019;7(2).
  30. McLaughlin KA, Chitnis T, Newcombe J, Franz B, Kennedy J, McArdel S, et al. Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis. Journal of immunology (Baltimore, Md : 1950). 2009;183(6):4067-76.
  31. Ramanathan S, Dale RC, Brilot F. Anti-MOG antibody: The history, clinical phenotype, and pathogenicity of a serum biomarker for demyelination. Autoimmun Rev. 2016;15(4):307-24.
  32. Sremec J, Tomasović S, Tomić Sremec N, Šućur A, Košćak Lukač J, Bačić Baronica K, et al. Elevated Concentrations of Soluble Fas and FasL in Multiple Sclerosis Patients with Antinuclear Antibodies. Journal of clinical medicine. 2020;9(12):3845.
  33. Nosal RS, Superville SS, Varacallo M. Biochemistry, Antinuclear Antibodies (ANA). StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC.; 2020.
  1. Pisetsky DS, Lipsky PE. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nature reviews Rheumatology. 2020;16(10):565-79.
  2. Becker J, Geffken M, Diehl RR, Berlit P, Krämer M. Choosing wisely? Multiple Sclerosis and Laboratory Screening for Autoimmune Differential Diagnoses. Neurology International Open. 2017;1(04):E256-E63.
  3. Szmyrka-Kaczmarek M, Pokryszko-Dragan A, Pawlik B, Gruszka E, Korman L, Podemski R, et al. Antinuclear and antiphospholipid antibodies in patients with multiple sclerosis. Lupus. 2012;21(4):412-20.
  4. Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. Journal of neuroinflammation. 2019;16(1):1-11.
  5. Gabelić T, Radmilović M, Posavec V, Škvorc A, Bošković M, Adamec I, et al. Differences in oligoclonal bands and visual evoked potentials in patients with radiologically and clinically isolated syndrome. Acta Neurologica Belgica. 2013;113(1):13-7.
  6. Tintore M, Rovira À, Río J, Otero-Romero S, Arrambide G, Tur C, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138(7):1863-74.
  7. Kuhle J, Disanto G, Dobson R, Adiutori R, Bianchi L, Topping J, et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Multiple Sclerosis Journal. 2015;21(8):1013-24.
  8. Tintoré M, Rovira A, Rio J, Tur C, Pelayo R, Nos C, et al. Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology. 2008;70(13 Part 2):1079-83.
  9. Boscá I, Magraner M, Coret F, Alvarez-Cermeno J, Simo-Castello M, Villar L, et al. The risk of relapse after a clinically isolated syndrome is related to the pattern of oligoclonal bands. Journal of neuroimmunology. 2010;226(1-2):143-6.
  10. Ignacio RJ, Liliana P, Edgardo C. Oligoclonal bands and MRI in clinically isolated syndromes: predicting conversion time to multiple sclerosis. Journal of neurology. 2010;257(7):1188-91.
  11. Frau J, Villar LM, Sardu C, Secci MA, Schirru L, Ferraro D, et al. Intrathecal oligoclonal bands synthesis in multiple sclerosis: is it always a prognostic factor? Journal of neurology. 2018;265(2):424-30.
  12. Sapko K, Jamroz-Wiśniewska A, Marciniec M, Kulczyński M, Szczepańska-Szerej A, Rejdak K. Biomarkers in Multiple Sclerosis: a review of diagnostic and prognostic factors. Neurol Neurochir Pol. 2020;54(3):252-8.
  13. Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacology & therapeutics. 2019;203:107394.
  14. Canto E, Reverter F, Morcillo-Suárez C, Matesanz F, Fernandez O, Izquierdo G, et al. Chitinase 3-like 1 plasma levels are increased in patients with progressive forms of multiple sclerosis. Multiple Sclerosis Journal. 2012;18(7):983-90.
  15. Lambertsen KL, Soares CB, Gaist D, Nielsen HH. Neurofilaments: The C-Reactive Protein of Neurology. Brain sciences. 2020;10(1).
  16. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nature reviews Neurology. 2018;14(10):577-89.
  17. Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius Å, et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clinical Chemistry and Laboratory Medicine (CCLM). 2016;54(10):1655-61.
  18. Disanto G, Barro C, Benkert P, Naegelin Y, Schädelin S, Giardiello A, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Annals of neurology. 2017;81(6):857-70.
  19. Williams T, Zetterberg H, Chataway J. Neurofilaments in progressive multiple sclerosis: a systematic review. J Neurol. 2020.
  20. Disanto G, Adiutori R, Dobson R, Martinelli V, Dalla Costa G, Runia T, et al. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. Journal of Neurology, Neurosurgery & Psychiatry. 2016;87(2):126-9.
  21. Håkansson I, Tisell A, Cassel P, Blennow K, Zetterberg H, Lundberg P, et al. Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing–remitting multiple sclerosis. European journal of neurology. 2017;24(5):703-12.
  22. Matute-Blanch C, Villar LM, Álvarez-Cermeño JC, Rejdak K, Evdoshenko E, Makshakov G, et al. Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain. 2018;141(4):1085-93.
  23. Högel H, Rissanen E, Barro C, Matilainen M, Nylund M, Kuhle J, et al. Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity. Multiple Sclerosis Journal. 2020;26(2):210-9.
  24. Gilli F, Bertolotto A, Sala A, Hoffmann F, Capobianco M, Malucchi S, et al. Neutralizing antibodies against IFN‐β in multiple sclerosis: antagonization of IFN‐β mediated suppression of MMPs. Brain. 2004;127(2):259-68.
  25. Hegen H, Auer M, Deisenhammer F. Predictors of response to multiple sclerosis therapeutics in individual patients. Drugs. 2016;76(15):1421-45.
  26. Polman CH, Bertolotto A, Deisenhammer F, Giovannoni G, Hartung H-P, Hemmer B, et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. The Lancet Neurology. 2010;9(7):740-50.
  27. Khoy K, Mariotte D, Defer G, Petit G, Toutirais O, Le Mauff B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front Immunol. 2020;11:549842.
  28. Vennegoor A, Rispens T, Strijbis EM, Seewann A, Uitdehaag BM, Balk LJ, et al. Clinical relevance of serum natalizumab concentration and anti-natalizumab antibodies in multiple sclerosis. Multiple Sclerosis Journal. 2013;19(5):593-600.
  29. Thebault S, Booth RA, Freedman MS. Blood Neurofilament Light Chain: The Neurologist's Troponin? Biomedicines. 2020;8(11).
  30. Kapoor R, Smith KE, Allegretta M, Arnold DL, Carroll W, Comabella M, et al. Serum neurofilament light as a biomarker in progressive multiple sclerosis. Neurology. 2020;95(10):436-44.
  31. Akgün K, Kretschmann N, Haase R, Proschmann U, Kitzler HH, Reichmann H, et al. Profiling individual clinical responses by high-frequency serum neurofilament assessment in MS. Neurology-Neuroimmunology Neuroinflammation. 2019;6(3).
  32. Gunnarsson M, Malmeström C, Axelsson M, Sundström P, Dahle C, Vrethem M, et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Annals of neurology. 2011;69(1):83-9.
  33. Kuhle J, Disanto G, Lorscheider J, Stites T, Chen Y, Dahlke F, et al. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology. 2015;84(16):1639-43.
  34. Novakova L, Zetterberg H, Sundström P, Axelsson M, Khademi M, Gunnarsson M, et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology. 2017;89(22):2230-7.
  35. Londoño AC, Mora CA. Role of CXCL13 in the formation of the meningeal tertiary lymphoid organ in multiple sclerosis. F1000Research. 2018;7:514.
  36. Novakova L, Axelsson M, Khademi M, Zetterberg H, Blennow K, Malmeström C, et al. Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing‐remitting multiple sclerosis. Journal of neurochemistry. 2017;141(2):296-304.
  37. Novakova L, Axelsson M, Khademi M, Zetterberg H, Blennow K, Malmeström C, et al. Cerebrospinal fluid biomarkers of inflammation and degeneration as measures of fingolimod efficacy in multiple sclerosis. Multiple Sclerosis Journal. 2017;23(1):62-71.
  38. Marrie RA, Wolfson C. Multiple sclerosis and varicella zoster virus infection: a review. Epidemiology and infection. 2001;127(2):315-25.
  39. Cook S, Leist T, Comi G, Montalban X, Giovannoni G, Nolting A, et al. Safety of cladribine tablets in the treatment of patients with multiple sclerosis: an integrated analysis. Multiple sclerosis and related disorders. 2019;29:157-67.
  40. Paz SPC, Branco L, Pereira MAC, Spessotto C, Fragoso YD. Systematic review of the published data on the worldwide prevalence of John Cunningham virus in patients with multiple sclerosis and neuromyelitis optica. Epidemiology and health. 2018;40:e2018001.
  41. Schwab N, Schneider-Hohendorf T, Hoyt T, Gross CC, Meuth SG, Klotz L, et al. Anti-JCV serology during natalizumab treatment: Review and meta-analysis of 17 independent patient cohorts analyzing anti-John Cunningham polyoma virus sero-conversion rates under natalizumab treatment and differences between technical and biological sero-converters. Multiple sclerosis (Houndmills, Basingstoke, England). 2018;24(5):563-73.
  42. Voortman MM, Greiner P, Moser D, Stradner MH, Graninger W, Moser A, et al. The effect of disease modifying therapies on CD62L expression in multiple sclerosis. Multiple sclerosis journal - experimental, translational and clinical. 2018;4(3):2055217318800810.
  43. Schwab N, Schneider-Hohendorf T, Pignolet B, Spadaro M, Görlich D, Meinl I, et al. PML risk stratification using anti-JCV antibody index and L-selectin. Multiple Sclerosis Journal. 2016;22(8):1048-60.
  44. Schwab N, Cahir-McFarland E, Schneider-Hohendorf T, Wiendl H, Ransohoff RM, Lieberman L, et al. CD62L is not a reliable biomarker for predicting PML risk in natalizumab-treated R-MS patientsAuthor Response. Neurology. 2016;87(9):958-9.